Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Virol ; 96(4): e0196921, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702819

ABSTRACT

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Central Nervous System Viral Diseases/immunology , Microglia/immunology , SARS-CoV-2/physiology , Virus Replication/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Central Nervous System/immunology , Central Nervous System/virology , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , Chemokines/genetics , Chemokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Microglia/virology , Neurons/immunology , Neurons/virology , Virus Replication/genetics
2.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1335097

ABSTRACT

Different mechanisms were proposed as responsible for COVID-19 neurological symptoms but a clear one has not been established yet. In this work we aimed to study SARS-CoV-2 capacity to infect pediatric human cortical neuronal HCN-2 cells, studying the changes in the transcriptomic profile by next generation sequencing. SARS-CoV-2 was able to replicate in HCN-2 cells, that did not express ACE2, confirmed also with Western blot, and TMPRSS2. Looking for pattern recognition receptor expression, we found the deregulation of scavenger receptors, such as SR-B1, and the downregulation of genes encoding for Nod-like receptors. On the other hand, TLR1, TLR4 and TLR6 encoding for Toll-like receptors (TLRs) were upregulated. We also found the upregulation of genes encoding for ERK, JNK, NF-κB and Caspase 8 in our transcriptomic analysis. Regarding the expression of known receptors for viral RNA, only RIG-1 showed an increased expression; downstream RIG-1, the genes encoding for TRAF3, IKKε and IRF3 were downregulated. We also found the upregulation of genes encoding for chemokines and accordingly we found an increase in cytokine/chemokine levels in the medium. According to our results, it is possible to speculate that additionally to ACE2 and TMPRSS2, also other receptors may interact with SARS-CoV-2 proteins and mediate its entry or pathogenesis in pediatric cortical neurons infected with SARS-CoV-2. In particular, TLRs signaling could be crucial for the neurological involvement related to SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Cerebral Cortex/metabolism , Neurons/virology , SARS-CoV-2/pathogenicity , Toll-Like Receptors/metabolism , COVID-19/genetics , COVID-19/immunology , Child , Cytokines/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Neurons/immunology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Signal Transduction/genetics , Toll-Like Receptors/genetics , Virus Replication
4.
J Nucl Med ; 61(12): 1726-1729, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-993173

ABSTRACT

We report the case of a 72-y-old man with concomitant autoimmune encephalitis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The patient presented with subacute cerebellar syndrome and myoclonus several days after general infectious symptoms began. Methods: Clinical examination, CT, PET, MRI, and autoantibody testing were performed. Results: The oropharyngeal swab test was positive for SARS-CoV-2. The brain MRI results were normal. Cerebrospinal fluid testing showed normal cell counts, a negative result on reverse-transcription polymerase chain reaction testing, and no oligoclonal banding. Brain 18F-FDG PET showed diffuse cortical hypometabolism associated with putaminal and cerebellum hypermetabolism, compatible with encephalitis and especially cerebellitis. The immunologic study revealed high titers of IgG autoantibodies in serum and cerebrospinal fluid directed against the nuclei of Purkinje cells, striatal neurons, and hippocampal neurons. Whole-body 18F-FDG PET and CT scans did not show neoplasia. Treatment with steroids allowed a rapid improvement in symptoms. Conclusion: This clinical case argues for a possible relationship between SARS-CoV-2 infection and autoimmune encephalitis and for the use of 18F-FDG PET in such a context.


Subject(s)
Autoantibodies/metabolism , COVID-19/complications , COVID-19/diagnostic imaging , Encephalitis/complications , Fluorodeoxyglucose F18 , Hashimoto Disease/complications , Neurons/immunology , Positron-Emission Tomography , Aged , COVID-19/immunology , COVID-19/therapy , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL